

**Bachelor of Science (B.Sc.) Semester-II
(C.B.S.) Examination**

PHYSICS

Compulsory Paper—I

**(Oscillations, Kinetic Theory of Gases &
Thermodynamics)**

Time—Three Hours]

[Maximum Marks—50

N.B. :— (1) **ALL** questions are compulsory.
(2) Draw neat and labelled diagrams wherever necessary.

EITHER

1. (a) What are Lissajous' Figures ? Discuss analytically the composition of two perpendicular S.H.Ms of same frequencies but of different amplitudes and phases. State the equation for phase difference $3\pi/4$. 5
(b) (i) Deduce the energy equation of damped oscillations and show that the total energy decreases exponentially with time. 3

(ii) A body of mass 1 kg is suspended from a spring of stiffness constant 25 N/m. If

undamped frequency is $\frac{2}{\sqrt{3}}$ times the damped frequency, calculate damping constant. 2

OR

(c) Derive a general differential equation of a Simple Harmonic Oscillator. 2½

(d) A man stands on a platform that vibrates simple harmonically in a vertical direction at a frequency of 5 Hz. Show that the man loses contact with the platform when the displacement exceeds 0.01 metres. 2½

(e) What is a damped oscillator ? Obtain the differential equation for it. 2½

(f) State and explain the condition for critically damped motion. 2½

EITHER

2. (a) Explain the terms (i) Collision cross section, and (ii) Mean free path of gas molecule.

Deduce an expression for the mean free path of a gas molecule on the basis of Kinetic theory of gas.

5

(b) (i) What is amplitude resonance ? Obtain the expression for amplitude at resonance in case of a forced harmonic oscillator. 3

(ii) The equation of motion is

$$2 \times 10^{-4} \frac{d^2x}{dt^2} + 4 \times 10^{-2} \frac{dx}{dt} + 5x = 0.124 \sin 100t$$

where all quantities are in S.I. units. Find Natural frequency of undamped oscillation.

2

OR

(c) Derive an expression for the power dissipated by the forced oscillator. 2½

(d) A harmonic oscillator consisting of 50 gm mass attached to a mass-less spring has a quality factor 200. If it oscillates with an amplitude 2 cm in resonance with a periodic force of frequency 20 Hz. Calculate (i) average energy stored in it and (ii) rate of dissipation of energy. 2½

(e) Using the law of equipartition of energy, derive an expression for the ratio of molar specific heats of gases. 2½

(f) Describe the effect of pressure, temperature and density on mean free path of gas molecules. 2½

EITHER

3. (a) Describe Carnot's cycle and obtain an expression for efficiency of Carnot's heat engine in terms of temperatures. 5

(b) (i) Explain First law of thermodynamics and give its physical significance. 3

(ii) Calculate change in internal energy when 0.004 kg of air is heated from 2°C to 10°C at constant volume.

(Given : Specific heat of air at constant volume, $C_v = 0.172 \text{ K-cal/kg}^{\circ}\text{C}$.) 2

OR

(c) Derive an expression for the coefficient of thermal conductivity. 2½

(d) Explain reversible process and irreversible process with examples. 2½

(e) State van der Waals' equation of state. Obtain expression for the critical constants in terms of van der Waals' constants. 2½

The van der Waal's constants for a gas a and b are $0.37 \text{ Nm}^4/\text{mole}^2$ and $43 \text{ cm}^3/\text{mole}$ respectively. Find its V_c , P_c and T_c . 2½

EITHER

4. (a) State Joule-Thomson effect. Derive an expression for Joule-Thomson coefficient.

Discuss the results of Joule-Thomson porous-plug experiment. 5

(b) (i) Explain with neat diagram, the process of liquefaction of helium gas. 3

(ii) The van der Waal's constants of CO_2 gas are $a = 172 \text{ atm. cm}^6 \text{ mole}^{-2}$ and $b = 0.002 \text{ cm}^3 \text{ mole}^{-1}$. If $R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}$, calculate its temperature of inversion. 2

OR

(c) Explain the term entropy and give its physical significance. 2½

(d) What is Boyle's temperature ? Obtain the relation between Boyle's temperature and the temperature of inversion. 2½

(e) State and prove the Law of increase of entropy in Thermodynamics. 2½

Calculate the increase in entropy when 1 gm atom of solid mercury at its melting point is raised to a temperature of 40 °C.

(Given : For mercury, melting point = -39 °C,

Latent heat of fusion = 3.0 cal/gm,

Mean specific heat = 0.0335 cal/gm. K and

One gm atom of mercury = 200 gm.) 2½

5. Attempt any TEN questions :—

- (i) Define angular Simple Harmonic Motion.
- (ii) One kilogram mass of a body is attached to the spring of stiffness constant 16 N/m. Find the natural frequency of oscillation.
- (iii) Define quality factor of oscillator.
- (iv) Write any two assumptions of the kinetic theory of gases.
- (v) State the law of equipartition of energy.
- (vi) Compute the ratio of molar specific heats for polyatomic gas molecules.
- (vii) State the Zeroth law of Thermodynamics.
- (viii) Define coefficient of self diffusion.
- (ix) Write any two limitations of van der Waals' equation.

(x) Entropy and electric charge belong to the category of extensive variables — true or false ?

(xi) Calculate increase in entropy when 1 gm of water at 100°C is converted into steam at 100°C .
(Given : Latent heat of steam = 540 cal/gm)

(xii) Name the gas used in the compressor of Air Conditioner. $1 \times 10 = 10$